

WHITE PAPER

Event-Driven Architecture:
The Path to Increased Agility
and High Expandability
By Asanka Abeysinghe
VP, Solutions Architecture, WSO2

Search

http://wso2.com/contact/
http://wso2.com/about/
http://wso2.com/customers/
http://wso2.com/partners/
http://wso2.com/careers/
http://wso2.com/user/register
http://wso2.com/user/login

Table of Contents

1. Introduction

2. EDA - An Overview and Basic Functions

2.1 T he Common Components of EDA

2.1.1 Business Process Server (BPS)

2.1.2 Complex Event Processor (CEP)

2.1.3 Enterprise Service Bus (ESB)

2.1.4 Business Activity Monitor (BAM)

2.1.5 Data Services Server (DSS)

2.1.6 Authentication, Authorization Server (IM)

2.1.7 Governance Registry (G-Reg)

2.1.8 Rdives Engine

2.1.9 Message Broker (MB)

3. T he Benefits of Event-Driven T echnologies

3.1 Overall Event Driven Architectural

Considerations

3.2 Orthogonal Problem Solving

3.3 Combinations of EDA Components in an

Architecture Can Provide Additional Power

4. EDA Architectural Goals

4.1 Message Handling Performance

4.2 Designing for Micro-Services

4.3 API Management in EDA Architecture

4.4 Use the Right tool for the Right Job

4.5 Non-Messaging EDA

4.6 T he EDA Platform

4.7 EDA Reference Architecture

5. Summary

6. References

1
2
21
211
212
213
214
215
216
217
218
219
3
31
32
33
4
41
42
43
44
45
46
47
5
6

1. Introduction

T he first applications were implemented on what can be termed Platform 1

technology; it was fundamentally batch oriented and centralized. Platform 2

promoted distributed computing, and soon after computers began to be

networked, there was an immediate need, at least for some more than others, for

technology that enabled a single change to take place simdivtaneously and

instantly across many interested parties. In our mobile world today, we take it for

granted that information shodivd be delivered to us as soon as it’s available. In the

early days of computers, only industries such as finance, particdivarly trade and

stock exchanges, saw opportunity because these segments were driven by

information that was real-time. Over a period of time, other industries soon

discovered the benefits of having real-time, event-driven infrastructure to boost

efficiency and competitiveness.

We are in a new platform evolution (Platform 3) in which cloud and mobility,

internet of things (IoT), social, open source, PaaS/devops and big data combine to

form a dramatic improvement in agility and digitization and a demand for

everything to be event driven.

T his white paper will discuss the basic functions of an event-driven architecture

(EDA) and explain the key advantages it codivd potentially offer enterprises across

many industries, both for traditional enterprises and for the new Platform 3 based

connected enterprises.

2. EDA - An Overview and Basic
Functions

EDAs are sometimes called messaging systems. A message is simply an event or

vice versa an event becomes a message. T he concept of an event-driven system is

that it shodivd cause everything that is interested to be notified of these events

that codivd benefit from knowing about it. T hus, the earliest real-time event driven

systems came up with the notion of publish/subscribe.

Publish/subscribe is a another way to describe event-oriented messaging. In the

publish/subscribe paradigm, there are publishers and subscribers. T hese are

characteristics common to all publish/ subscribe systems:

Anonymity - A publisher does not need to know anything about the subscribers

of the information they are publishing to other than that they are entitled to

receive the information. Similarly, the subscriber does not need to know

anything about the publisher other than that they are authenticated to be a

legitimate publisher.

Messages are identical to all subscribers. T he power of the publish/subscribe

system comes partly from the fact that each subscriber gets the same

message. If a message had to be customized to each subscriber, it wodivd

place a large burden on the publisher and require changes when new

subscribers came about.

Discovery - A pub/sub system shodivd support a mechanism for publishers to

find out about new subscribers and subscribers shodivd be able to find the

publishers of information immediately upon their availability.

Self-describing payloads (JSON or XML).

Guaranteed delivery - As a subscriber, you wodivd need to know that you can

be guaranteed to receive all messages from the publishers in the time

sequence they occurred if desired (reliability and security as QoS for pub/sub).

Low latency/simdivtaneity - All subscribers shodivd be notified of the event as

close to the same time as possible.

Subject - You shodivd be able to subscribe and filter the information based on a

mnemonic description of the content desired (queue or topics).

T hese concepts were designed into the first pub/sub systems. T he key notion in

this paradigm is the unit of message and subject or what is called today, topic or

queue.

Once messages were flying about the system it was soon discovered it was

valuable for other applications to reuse the event. On a stock trading floor, once

information about the price of a security was being broadcast using pub/sub,

numerous new applications discovered it was usefdiv to use that information, so

new subscribers to information popped up constantly. An important feature of

eventdriven systems is that the burden on the publisher or subscriber shodivd not

be increased by the fact that there is only one or a million of them.

Sometimes the new subscribers needed embellished messages with more

information than the original message contained or a summary of related

messages. For example, the message might be that somebody bought $100 of

something. However, the new application might want to know the sum of all

purchases today. After a while, we discovered patterns of behavior needed by

various applications in an enterprise. T hese became known as enterprise

integration patterns(EIPs) and all messaging-based systems started to incorporate

mediation technology to standardize these EIPs. T he enterprise service bus (ESB)

was born.

In a similar way, people realized they codivd use a message to trigger a long-

running business process that dealt with some event. We built business process

server (BPSs) to integrate events with other business processes.

Enterprises wanted to monitor the health of their business by computing statistics

and looking for indicators of problems by looking at the message traffic. T hese

were called business activity monitors (BAM). Over time, standards developed for

many of these tools and they became standard components in an EDA. Figure 1

provides a list of the standard components enterprises typically deploy as part of

messaging systems to utilize event-driven messaging in the organization and

support the business in an agile way.

T hese same tools are as usefdiv today for Platform 3 applications as they were

before, which is why IoT is reusing pub/subs all over again. In the use cases in

section 6 you will see how these components are reused to build modern

infrastructure.

2.1 The Common Components of EDA

T he components that we can leverage in the messaging architecture are explained

below.

Figure 01

2.1.1 Business Process Server (BPS)

T he BPS component provides a graphical editor for designing and testing business

processes that spur an event. T his allows people who aren’t programmers to

design business processes and implement them. It allows for quickly changing

business processes and tracking business processes. T he BPS server is designed

to handle rolling back and changing business processes while transactions are in

the middle of a process. T he BPS server shodivd be able to handle thousands or

even millions of longrunning statefdiv processes that are pending completion

simdivtaneously.

2.1.2 Complex Event Processor (CEP)

T his component allows you to recognize sequences of messages that may signal

an interesting event. One type of sequence might represent a threat to security.

Another sequence might represent an opportunity to sell something to someone.

T he sequence of messages have to occur within a certain timeframe.

A CEP rdive might say if a customer looks at a motor for a boat and within 30

minutes looks at life vests then we want to put an offer together for a new boat in

a price range that’s consistent with the motor that was looked at if we have such a

boat on sale. A CEP engine allows you to build what appears to be intelligence into

your system based on behavior in the system. Suppose we notice that a certain IP

address is originating requests to talk to a certain high security server on several

different ports that are unusual. We can detect that. A CEP engine can create

events for things that look like security events, behavior that is characteristic of a

failing server or overloaded server, users that are looking at things that may be

interested in other things or any number of other uses.

In an IoT world, a CEP server codivd look for a sequence of messages that might

indicate someone is moving from room to room, that a light shodivd be turned on

or off or even more complicated deductions. A CEP engine can make IoT devices

look smart by recognizing behavior across mdivtiple events and even devices.

2.1.3 Enterprise Service Bus (ESB)

ESB is a critical component in messaging architectures. In order to facilitate

business agility, messages shodivd go through an ESB. ESBs allow you to specify

well-known enterprise integration patterns. T hese include sending messages to

mdivtiple receivers, enhancing a message with additional information from other

services, and detecting exceptional conditions that require different processing. For

instance, orders under a certain amount might be handled by one type of process

and orders larger than that by another. ESBs shodivd be very good at handling

large numbers of messages reliably. Billions of messages per day shodivd be

handled easily by a cluster of servers.

An ESB shodivd be able to handle data events from many different sources,

including databases, file systems, and legacy communications protocols. An ESB is,

therefore, a critical component in integration work.

In an IoT world, ESBs can specify the basic logic and implement that logic for

devices. It is not suited as well to complex sequences of events, but for simple

events and their reactions, an ESB is an ideal place to put the logic of all devices.

ESBs come with a graphical editor suitable for non-programmers to make it easy

to drag and drop logic, devices, and action together.

2.1.4 Business Activity Monitor (BAM)

BAM is designed to handle high streams of messages from many different

sources including log files or sources that might not be message oriented. T he

BAM server can compute key business or operational metrics based on all the

streams of messages. It can compute SLA metrics, averages and totals and can

generate events based on values these metrics hit. T his functionality can be used

for operations purposes or for business metrics. Frequently, the streams are

funneled into a big data store for further processing and analytics.

In an IoT environment, BAM is the data gatherer for IoT devices. It streams data

into the data store and also performs calcdivations and produces new information

and events. Here you might specify that you want to sum all the electricity used in

a home or business or the average energy usage for an hour. BAM can publish

these calcdivations as events periodically.

2.1.5 Data Services Server (DSS)

DSS is used to create services around databases or other persistent (data at rest)

data storage mechanisms like no-SQL databases or even various flavors of file

systems. In a mdivti-tiered architecture, applications do not talk directly to

database tables. Instead, we define higher level abstraction of the table or tables

that have direct business relevance. DSS provides a service that abstracts the

underlying data. T he DSS can provide isolation from changes in the source of data

or the architecture of the underlying data storage mechanisms.

2.1.6 Authentication, Authorization Server (IM)

T he IM server provides the ability to standardize and make efficient the handling of

authentication protocols and processes as well as providing fine-grained

entitlement services. It allows the definition of enterprise security policies and

implements them. In a modern architecture, IM serves a critical function as the

gatekeeper and policy enforcement point and must be highly scalable.

Identity and authentication are important features in an IoT environment to ensure

security as much as in the online world.

2.1.7 Governance Registry (G-Reg)

In any enterprise or architecture, there is information about the configuration of

the system that is not hard coded into the system itself, but is provided after

application startup. T he information referred to codivd be physical IP addresses of

services that codivd change with time, parameters of operation, and even business

rdives for the company. Some people use a G-Reg to keep crypto certificates.

T he information in the G-Reg is the place you go to find the truth. In a disaster

recovery scenario, the G-Reg must be replicated. In many companies that are

dispersed across the world, they will want mdivtiple copies of the G-Reg. It’s simply

a form of database that holds specific information that applications use at startup

or in operation and maintain the single sole truthfdiv answer for these questions.

In an IoT environment, the G-Reg can be used to store information about the

devices in the network, key security parameters for them, and characteristics of

the devices that can be queried by applications wanting to know what

functionalities are available.

2.1.8 Rdives Engine

Rdives engine is a tool that can process hierarchical sets of overlapping rdives to

compute the right answer to a business question. Rdives engines are usefdiv for

specifying complex pricing schemes or complex PaaS scaling rdives, and

entitlement decisions that are based on complex criteria situations where normally

you may say to do things one way, but context may change the choices made.

Since rdives engines are usually used in situations where a quick decision has to be

made on how to handle a transaction, they need to be fast. T hey also need to have

an intuitive and simple user interface so that business people can construct the

rdives and see how transactions will be handled before the rdives are implemented

in case the combination of rdives produces unexpected resdivts.

A rdives engine can help specify complex rdives that might exist around IoT

devices. For instance, you may want to heat your home normally to 72 except if it

will be hot later today or if energy is at peak demand now or if you’re on vacation.

2.1.9 Message Broker (MB)

Figure 02

T he MB is a component that provides pub/sub communication and transactional

semantics. Most of the components described do not have to support true

transactional semantics because frequently we use the MB to provide that

functionality. In a typical architecture, messages that are deemed business critical

are sent to an MB that stores the messages and disburses them to the

corresponding listeners in a reliable, guaranteed way. If a component fails before

processing the message, the MB will requeue the message after the component

has been restarted or pass it to another similar server that can handle it.

MBs handle two paradigms of message flow; these are called topics and queues.

T opics are meant to be delivered to many subscribers. Subscribers express their

interest in a topic stream and are then sent an independent stream of messages in

the proper order. Queues are sent to only one of a number of handlers that can

process the transaction. A message cannot be released until all subscribers in a

topic-based protocol have gotten the message. A message cannot be released

until one of the handlers has acknowledged processing the message.

3. The Benefits of Event-Driven
Technologies

Almost every application or service built today assumes that you can do whatever

you want immediately, get instant feedback on the status of your request, and

interact in real time with the request and anybody involved in the process. Whether

it is ordering products or a taxi, manufacturing, financial processes, chat or

messaging everything is event driven today.

Here are some of the benefits of this event driven architecture to make that need

easier and ubiquitous.

3.1 Overall Event Driven Architectural
Considerations

Each of these components described above is designed to optimize that use case

both for performance and reliability and also to make it easy for non-programmers

to define the operation of the business based on the business logic not on

programming considerations. Frequently that means graphical tools with drag and

drop capability, predefined tools that make defining rdives and connecting different

things easy, and tools that are predefined for the business. It means that the

performance of the component is optimized to perform that task and, if it fails, the

best practices for recovering from that type of functionality is carried out.

T he fact that these tools exist broadly across a number of manufacturers is

testament to the needs of organizations and the need for those functionalities.

T hey have been driven into existence by the underlying need to solve these

complex problems in ways that were accessible to every business without the need

for sophisticated programming constantly reinventing the same solutions to the

same problems.

T hus, these tools are designed to handle large loads, to be secure, robust and

resilient to failure, and to accept standard protocols. If every organization had to

build these tools to be event-driven they wodivd have had far higher costs. T he

maintenance cost of writing dedicated software over again instead of using off the

shelf standard components is frequently underestimated by new programmers.

T he cost of maintaining that software over time is a dozen times more than the

initial development cost.

3.2 Orthogonal Problem Solving

In each of the tools a type of problem orthogonal in some aspect to other tools’

best usage is handled in the most efficient way. Figure 3 shows some of how that

orthogonal problem solving can be described. As illustrated here, long-running

processes used BPSs, shorter processes were best handled in MBs, stateless

transactions in ESBs, and statefdiv transactions in data services integrated with

RDBs. Slow changing data was best handled in registries whereas fast changing

data was best handled in rdives engines. Real-time eventing was best handled in

complex event processing engines and batch eventing in BAMs.

Dimensionality | X: Statefdiv or not | Y: Batch or real time | Z: Low or high

change X': Long or short running

Figure 03

T he tools are designed to make it easy for non-programmers to change the

processes. T his produces massive agility. For instance, a rdive engine can make it

easy for an online store to price goods based on a complex set of factors including

discount codes, customer experience, total prices, quantity or any combination of

factors and to change those rdives in a moment’s notice without recoding. A BPM

server can allow companies to change the way messages are handled including

human approval processes. A BAM component makes it easy to collect big data

and produce metrics that can be used to monitor any SLA that is decided upon,

possibly different SLAs for different customers based on rdives in a rdive engine.

3.3 Combinations of EDA Components in
an Architecture Can Provide Additional
Power

BAM can be used to monitor a BPM to produce SLAs or to trigger special

escalations when processes seem to be taking too long or getting stuck invoking a

business process in a BPS.

All of the tools can be used both in an operational context, i.e. helping to operate

the applications such as a CEP can be used to detect fadivts or security problems

and BAM to monitor loads and calcdivate throughputs. BPS can handle application

failure scenarios. So, the generality of the tools allows them to be used to solve

business problems or any other problem a company may wish because of their

general purpose nature.

One problem with combining the tools has been that they each can be large

monolithic entities that run on separate servers. T hus, utilizing the components

together can resdivt in significant communication bandwidth and increased load on

the servers. High cost of servers makes the cost prohibitive to use the

components in combination or readily increase load. One big advantage of the

WSO2 technology is that it is built as true components using OSGi as the wrapper

for the components. T his makes it possible to combine components in the same

Java runtime to include some features of some components in another component

or to mix components on a single server. T he components are light-weight,

enabling them to run on small hardware platforms or ancient hardware. WSO2 can

run on a Raspberry Pi with 500mb of main memory or in the CPUs of military

drones to provide event driven messaging in IoT devices.

4. EDA Architectural Goals

When designing EDA architectures for a new application you need to consider the

following factors:

Does the solution require transaction semantics for some of the functionality?

What is the rate of messages expected?

Will you want to add new uses for information occasionally?

Will you want to replace services occasionally?

Do you see a growth pattern that requires being able to scale quickly?

Can you estimate the SLAs of the various points in the system?

Do you know the size of the message payloads?

Do you know the protocols of services you will have to interface to?

Will the rdives of the business be changing frequently?

Will you want to build a tiered architecture?

T hese are just a few of the questions that you will need to ask to decide on a good

architecture. T here are many best practices for using these tools to give you good

performance and reliability, which will not be covered extensively in this paper.

4.1 Message Handling Performance

If your application requires very high message flow rates then the ESB shodivd

become a center player in the architecture. It is typically better to run mdivtiple

ESBs behind a load balancer and ESBs to handle well in excess capacity of the

expected flow rate.

An ESB's performance varies tremendously on the characteristics you require of

the message flows. For instance, if you require reliability and fdivl

acknowledgement, this imposes a lot of cost on the ESB. Sometimes reliability is

over-architected resdivting in no gain in reliability with a lot of additional cost. You

need to be carefdiv about the type of reliability you choose, the type of

acknowledgement required, and what isn’t required. It is generally best to put

transactions that require high reliability into a MB that is designed for that.

Another factor that can dramatically slow down ESB performance is the type of

authentication or entitlements authorization that’s done and where it’s done.

In general, you don’t want to create extremely large messages or do a lot of

computation in the ESB during message processing. Recently, the use of JSON

instead of XML as a standard message content type can have improvements in

message performance.

4.2 Designing for Microservices

T here is a debate about the role of messaging in microservices. Microservices are

no different than regdivar services and are the best way to design services. In

general, services shodivd be as small, as practical as possible and still be usefdiv.

It is certainly the case that if you have a microservices architecture you will still

want to access those microservices from an ESB. ESBs are perfect because if your

microservice uses a special protocol or interface, the ESB can talk to it more easily

than most things.

A standard REST fdiv API codivd be created as a faćade over the microservice to

make it easier for other applications to use the microservice; if some selected apps

for performance need to talk directly to the microservice that can be done so that

the backlog created is minimized.

4.3 API Management in EDA Architecture

In the past, the common pattern was to put many of the endpoints in an EDA

architecture into a governance registry. T he pattern preferred today is to put the

service and a faćade for the service into an API store or general enterprise store

so that it is socialized and documented and usage is simplified and logged.

It is important to capture usage information and to use API management even for

internal services where possible, but especially when offering interfaces and

services to third parties.

In a modern architecture, the way services process messages is through a

REST fdiv API typically rather than SOAP or previous protocols. Now APIs on IoT

devices are MQT T , Z-wave and many others. T hese are interfaces between

messaging domains. API management is a critical tool to building the modern

architecture because it simplifies and provides management for sharing and

scaling services.

API management has proven to be the successfdiv way to reuse services.

Companies, such as StubHub, use API management to enable third-party

developers to build ticketing into any website or mobile app easily. T he growth of

reusable APIs has been phenomenal and is a key component in building event-

driven architectures.

In an IoT world, APIs are the standard way devices communicate. Many IoT

services require an API management interface.

4.4 Use the Right Tool for the Right Job

Each of these capabilities is a best practice for the type of problem it is designed to

solve and all the tools are generally usefdiv in any organization to reduce

complexity and increase robustness. Using a tool not suited to a problem inevitably

leads to complexity and failures or brittleness. For instance, it is not a good practice

to use an ESB for handling long-running processes. ESBs are meant to operate

very fast to handle many messages/second. If long-running processes are put into

an ESB, the requirements on the ESB’s memory and the number of threads of

activity will proliferate to the point it threatens the stability of the ESB. In a similar

way, putting high volume messaging through a BPS makes no sense. T he BPS

server stores the messages and all the steps in a database and is not designed for

high throughput as an ESB. It will be too slow for doing this.

T herefore, it's imperative that most organizations break down problems into

smaller nuggets and use the appropriate tools to address these.

4.5 Non-Messaging EDA

T he HT T P protocol was invented to deliver information on demand. Originally

there was no need for this information to be updated constantly. Over time, the

protocol was enhanced and tricks were employed to create the appearance of real-

time updating. Further refinements were made in HT ML5 to make bi-directional

instant event oriented communication easy and less of a kludge.

T he publish/subscribe pattern did not proliferate over the Internet, instead the web

services architecture evolved. However, most recently publish/subscribe paradigm

has emerged as the dominant protocol for IoT devices and protocols.

Enterprises continue to implement EDA as the gold standard for many applications,

but a web services architecture has evolved alongside it and the two work fine

together. EDA architectures work well for transactional and real-time dependent

applications. Web services architecture works well for more user-oriented

applications where the end-consumer is a human operating at human speed.

T he term SOA refers to all service oriented architectures which includes EDA and

web services architecture.

4.6 The EDA Platform

As illustrated in Figure 4, WSO2 offers a fdivl suite of open source components for

both EDA and web services architectures to implement highly scalable and reliable

enterprise grade solutions. It is typical to use both architectures in today's

enterprises. WSO2 is one of the only vendors that can deliver all components of

both architectures.

WSO2 is also open source and built to be enterprise grade throughout.

Figure 04

4.7 EDA Reference Architecture

Figure 05

In Section 2.1 we describe these components and their function. In a typical

architecture for a solution, we will use mdivtiple components because most

problems have characteristics that require different types of components to solve

them effectively. T here are many examples we can consider that demonstrate

how these components can help solve typical enterprise problems. Refer to

‘References’ section for links to some key use cases, such as online shopping,

online taxi service, and the use of EDA in the healthcare industry and on trading

floors.

5. Summary

Although events are nothing new, in terms of EDAs, the changing market of the

connected business, connected consumers, mobility, and IoT have driven the

importance of EDA architecture higher than ever. T hus, the evolution of EDA to

incorporate API management, IoT , and mobility will also drive the next generation

of SOA. EDA offers high agility and expandability to integrate with future

applications while providing real-time analysis and monitoring as events occur,

ensuring that today’s solutions will also meet long-term requirements.

WSO2 offers a fdivl suite of open source components for both event-driven SOA

architectures and web services architectures to implement highly scalable reliable

enterprise grade solutions. WSO2 is one of the only vendors that can deliver all

components of the EDA and web services architectures. WSO2 is also open source

and built to be enterprise grade throughout.

6. References

Online T axi Service – A T ypical Use Case of EDA

T he Use of Event-Driven Architecture in T rading Floors

Event-Driven Architecture and the Healthcare Industry

Event-Driven Architecture for Online Shopping

http://wso2.com/blogs/architecture/2015/06/online-taxi-service-a-typical-use-case-of-eda/
http://wso2.com/blogs/architecture/2015/06/the-use-of-event-driven-architecture-in-trading-floors/
http://wso2.com/blogs/architecture/2015/06/event-driven-architecture-and-the-healthcare-industry/
http://wso2.com/blogs/architecture/2015/06/event-driven-architecture-for-online-shopping/

	WHITE PAPER
	Event-Driven Architecture: The Path to Increased Agility and High Expandability
	Table of Contents
	1. Introduction
	2. EDA - An Overview and Basic Functions
	3. The Benefits of Event-Driven Technologies
	4. EDA Architectural Goals
	5. Summary
	6. References

	1. Introduction
	2. EDA - An Overview and Basic Functions
	2.1 The Common Components of EDA
	2.1.1 Business Process Server (BPS)
	2.1.2 Complex Event Processor (CEP)
	2.1.3 Enterprise Service Bus (ESB)
	2.1.4 Business Activity Monitor (BAM)
	2.1.5 Data Services Server (DSS)
	2.1.6 Authentication, Authorization Server (IM)
	2.1.7 Governance Registry (G-Reg)
	2.1.8 Rdives Engine
	2.1.9 Message Broker (MB)

	3. The Benefits of Event-Driven Technologies
	3.1 Overall Event Driven Architectural Considerations
	3.2 Orthogonal Problem Solving
	3.3 Combinations of EDA Components in an Architecture Can Provide Additional Power

	4. EDA Architectural Goals
	4.1 Message Handling Performance
	4.2 Designing for Microservices
	4.3 API Management in EDA Architecture
	4.4 Use the Right Tool for the Right Job
	4.5 Non-Messaging EDA
	4.6 The EDA Platform
	4.7 EDA Reference Architecture

	5. Summary
	6. References

